Skip to main content

Publications

Pinterest Labs tackles the most challenging problems in Machine Learning and Artificial Intelligence

With dozens of studies being done each year, our scientists and engineers are pushing the boundaries on what’s possible. Read below for more publications; and stay tuned for more to come.

Stay tuned for more publications from the Pinterest team.

OmniSearchSage: Multi-Task Multi-Entity Embeddings for Pinterest Search

Prabhat Agarwal, Minhazul Islam Sk, Nikil Pancha, Kurchi Subhra Hazra, Jiajing Xu and Chuck Rosenberg. WWW 2024.

TransAct: Transformer-based Realtime User Action Model for Recommendation at Pinterest

Xue Xia, Pong Eksombatchai, Nikil Pancha, Dhruvil Deven Badani, Po-Wei Wang, Neng Gu, Saurabh Vishwas Joshi, Nazanin Farahpour, Zhiyuan Zhang, Andrew Zhai. KDD, 2023.

Representation Online Matters: Practical End-to-End Diversification in Search and Recommender Systems

Pedro Silva, Bhawna Juneja, Shloka Desai, Ashudeep Singh, Nadia Fawaz. FAccT, 2023.

Rethinking Personalized Ranking at Pinterest: An End-to-End Approach

Jiajing Xu, Andrew Zhai, Charles Rosenberg. Recsys, 2022.

ItemSage: Learning Product Embeddings for Shopping Recommendations at Pinterest

Paul Baltescu, Haoyu Chen, Nikil Pancha, Andrew Zhai, Jure Leskovec, Charles Rosenberg. KDD, 2022.

Modeling User Behavior With Interaction Networks for Spam Detection

Prabhat Agarwal, Manisha Srivastava, Vishwakarma Singh, Charles Rosenberg. SIGIR, 2022.

PinnerFormer: Sequence Modeling for User Representation at Pinterest

Nikil Pancha, Andrew Zhai, Jure Leskovec, Charles Rosenberg, KDD, 2022.

Billion-Scale Pretraining with Vision Transformers for Multi-Task Visual Representations

Josh Beal, Hao-Yu Wu, Dong Huk Park, Andrew Zhai, Dmitry Kislyuk. WACV, 2022.

From Batch Processing to Real Time Analytics: Running Presto at Scale

Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He, Beinan Wang, Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao Li, Peng Du, Girish Baliga, Maosong Fu. ICDE, 2022

Toward Transformer-Based Object Detection

Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew Zhai, Dmitry Kislyuk. Preprint, 2021.

MultiSage: Empowering GCN with Contextualized Multi-Embeddings on Web-Scale Multipartite Networks

C. Yang, A. Pal, A. Zhai, N. Pancha, J. Han, C. Rosenberg, J. Leskovec. KDD, 2020.

PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest

A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, J. Leskovec. KDD, 2020.

Shop The Look: Building a Large Scale Visual Shopping System at Pinterest

Raymond Shiau, Hao-Yu Wu, Eric Kim, Yue Li Du, Anqi Guo, Zhiyuan Zhang, Eileen Li, Kunlong Gu, Charles Rosenberg, Andrew Zhai. KDD, 2020.

Expanding Taxonomies with Implicit Edge Semantics

Emaad Manzoor, Rui Li, Dhananjay Shrouty and Jure Leskovec. WWW, 2020.

Bootstrapping Complete the Look at Pinterest

E. Li, E. Kim, A. Zhai, J. Beal, K. Gu. KDD, 2020.

PinText 2: Attentive Bag of Annotations Embedding

J. Zhuang, J. Zhao, A. S. Subramanian, Y. Lin, Y. Guo, B. Krishnapuram, R. van Zwol. KDD, 2020.

Query2Interest Classification at Pinterest

J. Zhuang, J. Xie, Y. Guo, H. Vinicombe, R. Li, B. Krishnapuram, R. van Zwol. KDD, 2020.

Improving Query Safety at Pinterest

Abhijit Mahabal, Yinrui Li, Rajat Raina, Daniel Sun, Revati Mahajan, Jure Leskovec. KDD 2020.

Complete the Look: Scene-based Complementary Product Recommendation

Wang-Cheng Kang, Eric Kim, Jure Leskovec, Charles Rosenberg, Julian McAuley. CVPR, 2019.

Learning a Unified Embedding for Visual Search at Pinterest

Andrew Zhai, Hao-Yu Wu, Eric Tzeng, Dong Huk Park and Charles Rosenberg. KDD, 2019.

Graph Convolutional Neural Networks for Web-Scale Recommender Systems

Rex Ying, Ruining He, Kaifeng Chen, Chantat Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.

Notification Volume Control and Optimization System at Pinterest

Bo Zhao, Koichiro Narita, Burkay Orten, John Egan. KDD 2018.

Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-Time

Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma, Charles Sugnet, Mark Ulrich, Jure Leskovec. WWW 2018.

Visual Discovery at Pinterest.

Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng, Jeff Donahue, Yue Li Du, Trevor Darrell. WWW 2017.

Related Pins at Pinterest: The Evolution of a Real-World Recommender System

David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma, Zhigang Zhong, Jenny Liu, Yushi Jing. WWW 2017.

Training and Evaluating Multimodal Word Embeddings with Large-scale Web Annotated Images

Junhua Mao, Jiajing Xu, Yushi Jing, Alan Yuille. NeurIPS, 2016.

Understanding Behaviors that Lead to Purchasing: A Case Study of Pinterest

Caroline Lo, Dan Frankowski, Jure Leskovec. KDD 2016.

Power of Human Curation in Recommendation System

Yuchen Liu, Dmitry Chechik, Junghoo Cho. WWW 2016.

Item-to-Item Recommendations at Pinterest.

Stephanie Rogers. RecSys 2016.

Visual Search at Pinterest.

Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Jeff Donahue, Sarah Tavel. KDD 2015.

Inferring Networks of Substitutable and Complementary Products

Julian McAuley, Rahul Pandey, Jure Leskovec. KDD 2015.

Human Curation and Convnets: Powering Item-to-Item Recommendations on Pinterest

Dmitry Kislyuk, Yuchen Liu, David Liu, Eric Tzeng, Yushi Jing. Arxiv 2015.

Scaling Deep Social Feeds at Pinterest

Varun Sharma, Jeremy Carroll, Abhi Khune. BigData 2013.

We’re looking for Machine Learning enthusiasts

We’re hiring globally for Machine Learning research and engineering roles.

View all engineering jobs
two women standing in a room

Join our talent community

Whether you apply to a role today or in the future, stay up-to-date on Pinterest news, events and job openings by signing up for our Talent Community. We’ll send you newsletters you won’t want to miss.

Join